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Abstract

In this paper, variants of the classical Toeplitz operators on H2 are

studied. A characterization is obtained for the bounded, harmonic

symbols giving rise to a bounded Toeplitz operator on a Dirichlet-

type space. The relationship between the characterizing condition

and multipliers of the holomorphic and harmonic Dirichlet spaces is

examined.
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1 Introduction

In this paper, we study operators of the type f 7→ P (ϕf) on Dirichlet-type

spaces D(µ) (see Definition 2), where ϕ is a function on D or ∂D and P is

a projection. These operators are variants of the classical Toeplitz operators

on H2, and will be referred to as Toeplitz operators. The function ϕ is called

the symbol of the operator f 7→ P (ϕf), which will be denoted Tϕ.

In Section 2, two kinds of Dirichlet-type spaces are defined, and some

of their properties are given. In Section 3, one sort of Toeplitz operator is

examined. A characterization is obtained for the bounded, harmonic symbols

for which this operator is bounded on the Dirichlet space. The characterizing

condition is compared with D. Stegenga’s characterization of the multipliers

of the Dirichlet space. In Section 4, another sort of Toeplitz operator is

examined, and its boundedness on Dirichlet-type spaces is characterized.

Connections with multipliers of Dirichlet-type spaces are obtained.

2 Dirichlet-type Spaces

Definition 1. The Bergman space L2
a is the subspace of holomorphic func-

tions in L2(D) (with respect to normalized Lebesgue measure). The Dirichlet
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space D consists of those holomorphic functions f on D having f ′ ∈ L2
a; the

norm is given by ‖f‖2D = ‖f‖2H2+‖f ′‖2L2
a
. The quantity ‖f ′‖2L2

a
=
∫
D |f

′|2dA =∑
n|f̂(n)|2 is called the Dirichlet integral of f , denoted D(f). The formula

for the Dirichlet integral in terms of the power-series coefficients of f makes

it clear that D ⊂ H2. There is also a formula, due to J. Douglas [3], in terms

of integrals over ∂D:

∫
D
|f ′|2 dA =

∫
∂D

∫
∂D

∣∣∣∣f(eiθ)− f(eit)

eiθ − eit

∣∣∣∣2 dt2π

dθ

2π
. (1)

The inner integral is the local Dirichlet integral of f at eiθ, denoted Deiθ(f),

and can be regarded as a function on ∂D.

Definition 2. Let µ be a finite, positive, Borel measure on ∂D. The Dirichlet-

type space D(µ) is the set of holomorphic functions on D having a local

Dirichlet integral that is integrable with respect to µ. Equation (1) says that

D = D( dθ
2π

). The norm is given by ‖f‖2µ = ‖f‖2H2 +
∫
Dλ(f)dµ(λ). That

D(µ) ⊂ H2 is shown in [5] (also see Corollary 6).

The properties of a Toeplitz operator can depend both on its symbol and

on the projection P used in the definition of the operator. There are several

possible projections that can be used to define Toeplitz operators on D(µ).
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Example 3. Let L2
a be the Bergman space, a subspace of L2(D). Let PB be

the orthogonal projection of L2(D) onto L2
a, known as the Bergman projec-

tion. It can be expressed as an integral operator, or in terms of reproducing

kernels:

(PBf)(z) =

∫
f(w)

1

(1− zw)2
dA(w) = 〈f, kBz 〉L2(D), (2)

where dA denotes normalized Lebesgue measure on D.

If ϕ is a function on D such that ϕD(µ) ⊂ L2(D), then a Toeplitz operator

Tϕ can be defined on D(µ) by Tϕf = PB(ϕf).

Example 4. The Hardy space H2 can be identified with a subspace of

L2(∂D), with radial limits transforming an H2 function on D to its boundary

function, and the Poisson integral doing the reverse. The orthogonal pro-

jection of L2(∂D) onto H2(D) is known as the Szegö projection, and will be

denoted PH . Like PB, the Szegö projection can be expressed as an integral

operator or in terms of reproducing kernels:

(PHf)(z) =

∫
f(eiθ)

1

1− ze−iθ
dθ

2π
= 〈f, kH2

z 〉L2(∂D).

Since D(µ) ⊂ H2, every element of D(µ) has a boundary function defined

almost everywhere on ∂D. So if ϕ is a function on ∂D such that ϕD(µ) ⊂

L2(∂D), a Toeplitz operator Tϕ can be defined on D(µ) by Tϕf = PH(ϕf).
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Before proceeding with the next example, a harmonic analogue of D(µ)

will be defined.

In the sequel, if ν is a measure on ∂D, then Pν denotes the Poisson

integral of ν, the integral with respect to ν of the Poisson kernel: (Pν)(z) =∫ 1−|z|2
|z−λ|2 dν(λ). Note that the Poisson kernel itself is the Poisson integral of

the point mass δλ. If g is a function on ∂D, then Pg denotes the Poisson

integral of the measure g dθ
2π

.

If λ ∈ ∂D and δλ denotes the point mass at λ, then from Definition 2 it

follows that f ∈ D(δλ) iff f has a finite local Dirichlet integral at λ. The

following criterion of S. Richter and C. Sundberg [6] for Dλ(f) to be finite

will be useful:

Proposition 5. Let λ ∈ ∂D, f a function on D. Then f ∈ D(δλ) iff f =

α+ (z − λ)fλ for some constant α and function fλ ∈ H2. If this is the case,

then α is the radial limit f(λ) of f at λ, and Dλ(f) = ‖fλ‖22.

Remark. It is shown in [6] that in fact, if f ∈ D(δλ) then f(z) → f(λ) as

z approaches λ within any disc tangent to ∂D at λ. Also, P. Chernoff [2]

showed that if Dλ(f) < ∞, then the Fourier series of f at λ converges to

f(λ).

Corollary 6. D(µ) ⊂ H2.
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Proof. Let f ∈ D(µ). Since
∫
Dλ(f) dµ(λ) is finite, there is at least one λ

such that f ∈ D(δλ). For any such λ, by the proposition there are α ∈ C

and fλ ∈ H2 such that f = α + (z − λ)fλ. Therefore f ∈ H2.

The following analogue of the Douglas formula (1) for the Dirichlet inte-

gral will be used, and is proved by Richter and Sundberg in [6].

Proposition 7. If f ∈ H2, then∫
∂D
Dλ(f) dµ(λ) =

∫
D
|f ′|2PµdA. (3)

Like the Douglas formula, equation (3) can be extended to harmonic

functions.

Proposition 8. Let f be a harmonic function on D of the form f = f++f−,

where f+, f− ∈ D(µ) and f−(0) = 0. Then∫
∂D
Dλ(f) dµ(λ) =

∫
D

(∣∣∣∣∂f∂z
∣∣∣∣2 +

∣∣∣∣∂f∂z
∣∣∣∣2)PµdA =

∫
D
(|f ′+|2 + |f−

′|2)PµdA.

(4)

Proof. For λ ∈ ∂D and functions g, h ∈ D(δλ), define

Dλ(g, h) =

∫
∂D

g(λ)− g(eit)

λ− eit

(
h(λ)− h(eit)

λ− eit

)
dt

2π
.

Then Dλ(·, ·) is a sesquilinear form, and Dλ(g) = Dλ(g, g). Hence

Dλ(f) = Dλ(f+ + f−, f+ + f−) = Dλ(f+) + 2 ReDλ(f+, f−) +Dλ(f−). (5)
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Since Dλ(f−) = Dλ(f−), the proposition will follow by integrating (5) with

respect to µ and applying Proposition 7, once it is shown that Dλ(f+, f−) = 0

for [µ]-almost every λ.

Since f+, f− ∈ D(µ), both belong to D(δλ) for [µ]-almost every λ; fix such

a λ. By Proposition 5, choose g+, g− ∈ H2 such that f+ = f+(λ) + (z−λ)g+

and f− = f−(λ) + (z − λ)g−. Then

Dλ(f+, f−) =

∫
∂D

f+(λ)− f+(eit)

λ− eit

(
f−(λ)− f−(eit)

λ− eit

)
dt

2π

=

∫
∂D

f+(λ)− f+(eit)

λ− eit
f−(λ)− f−(eit)

λ− eit
λ− eit

λ− e−it
dt

2π

=

∫
∂D
g+(eit)g−(eit)(−λeit) dt

2π

= 0.

Definition 9. The harmonic Dirichlet-type space D(µ) is the set of functions

f ∈ L2(∂D) such that Dλ(f) is integrable with respect to µ. For such an f ,

the harmonic extension f(z) = (Pf)(z) to D satisfies (4); in the usual way,

elements of D(µ) can be regarded as functions on ∂D or as functions on D.

Define the norm by ‖f‖2 =
∫
Dλ(f) dµ(λ) + ‖f‖2L2(∂D).

Proposition 10. D(µ) is a reproducing-kernel Hilbert space containing D(µ)

as a closed subspace.
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Proof. Suppose f ∈ D(µ); write f = f+ + f−, with f+, f− ∈ D(µ) and

f−(0) = 0. If w ∈ D, then by the existence of H2 reproducing kernels,

|f(w)| = |f+(w) + f−(w)| ≤ |f+(w)|+ |f−(w)|

≤ ‖kH2

w ‖H2(‖f+‖H2 + ‖f−‖H2) ≤ C‖f‖L2(∂D)

≤ C‖f‖D(µ).

Thus, the functional of evaluation at w is bounded on D(µ), as was to be

proved.

Similarly, for k ∈ N

|f̂(−k)| = |f̂−(−k)| = |f̂−(k)| = |f−
(k)

(0)|/k! ≤ C‖f−‖H2 ≤ C‖f‖D(µ).

Therefore if {fn} is a sequence inD(µ) converging in D(µ) to f , then f̂(−k) =

0 for all k ∈ N. Thus D(µ) is closed in D(µ).

Example 11. If ϕ is a function on ∂D such that ϕD(µ) ⊂ D(µ), then a

Toeplitz operator Tϕ can be defined on D(µ) by Tϕf = Pµ(ϕf), where Pµ is

the orthogonal projection of D(µ) onto D(µ).

There are advantages to using each of the projections in Examples 3, 4,

and 11. The Bergman projection can be used for the largest collection of

symbols, as the requirement that ϕD(µ) ⊂ L2(D) is the weakest requirement
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among the three. Using the Szegö projection has the advantage of giving

rise to the best-understood sort of Toeplitz operator. The theory of Toeplitz

operators is most often studied in settings where the range of the projection

is the domain of the operator; such is the case if P = Pµ.

See R. Rochberg and Z. Wu [7] for results concerning a type of Toeplitz

operator on D different from that defined in Section 1.

3 Bergman Toeplitz Operators on D

The problem to be studied in this section is to determine the symbols ϕ for

which the Toeplitz operator Tϕf = PB(ϕf) is bounded on D. It will be

assumed that ϕ is a bounded, harmonic function on D.

The Bergman projection is one of a family of projections of L2(D) onto

L2
a. For α > −1, define the operator Pα by:

(Pαf)(z) = (α + 1)

∫
(1− |w|2)α

(1− zw)α+2
f(w) dA(w).

Clearly P0 = PB. If 1 ≤ p < ∞ and p(α + 1) > 1, then Pα is bounded

on Lp(D) and fixes the holomorphic functions in Lp(D), as shown in [10,

section 4.2].

The main result of this section hinges on the following lemma.
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Lemma 12. For f ∈ D, (Tϕf)′ = ∂ϕ
∂z
f + P1(ϕf

′).

Note that if ∂ϕ
∂z
f ∈ L2(D), then the right side of the equation is P1

(
∂
∂z

(ϕf)
)
.

Thus the lemma says that in a restricted sense, differentiation intertwines PB

and P1.

Proof. First, the lemma will be verified in the case of ϕ(z) = zm and f(z) =

zn:

(Tϕf)(z) = PB(ϕf)(z) =

∫
wmwn

(1− zw)2
dA(w)

=
1

π

∫ 2π

0

∫ 1

0

rme−imθrneinθ

(1− zre−iθ)2
r dr dθ

=
1

π

∫ 1

0

rm+n+1

∫ 2π

0

ei(n−m+2)θ

(eiθ − rz)2
dθ dr

=
1

πi

∫ 1

0

rm+n+1

∫
∂D

ζn−m+1

(ζ − rz)2
dζ dr.

A residue calculation shows that the contour integral
∫
∂D

ζn−m+1

(ζ−rz)2 dζ is zero if

n−m+ 1 ≤ 0, and is otherwise 2πi(n−m+ 1)(rz)n−m. Hence

(Tϕf)(z) = 2(n−m+ 1)zn−m
∫
r2n+1 dr =

n−m+ 1

n+ 1
zn−m (6)

if n−m ≥ 0 and zero otherwise.
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The derivative of Tϕf(z) is to be compared with:

P1(ϕf
′)(z) = 2

∫
1− |w|2

(1− zw)3
nwmwn−1 dA(w)

=
2n

πi

∫ 1

0

(1− r2)rm+n

∫
∂D

ζn−m+1

(ζ − rz)3
dζ dr.

Since
∫
∂D

ζn−m+1

(ζ−rz)3 dζ = πi(n −m + 1)(n −m)(rz)n−m−1 if n −m ≥ 1 and is

zero otherwise,

P1(ϕf
′)(z) = 2n(n−m+ 1)(n−m)zn−m−1

∫
(r2n−1 − r2n+1) dr

=
(n−m+ 1)(n−m)

n+ 1
zn−m−1

for n −m ≥ 1 and is otherwise zero. Comparing this with the derivative of

the right side of (6), we see that the lemma holds in this case.

Now let ϕ be any bounded, harmonic function on D, and f any element

of D. Define ϕ+ by ϕ+(z) =
∑∞

n=0 ϕ̂(n)zn; let ϕ− = ϕ − ϕ+. Both ϕ+ and

ϕ− belong to L2(D), but they need not be bounded functions.

Since ϕ is bounded and f ∈ D ⊂ L2, the sum ϕ
∑
f̂(n)zn converges in

L2 norm. Then since PB is bounded on L2,

PB(ϕf) =
∑

f̂(n)PB(ϕzn) =
∑

f̂(n)(ϕ+z
n + PB(ϕ−z

n))

= ϕ+f +
∞∑
n=0

f̂(n)
∞∑
m=1

ϕ̂(−m)PB(zmzn).
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Since ϕ is harmonic, ϕ′+ = ∂ϕ
∂z

; hence

PB(ϕf)′ =
∂ϕ

∂z
f + ϕ+f

′ +
∞∑
n=0

f̂(n)
∞∑
m=1

ϕ̂(−m)PB(zmzn)′. (7)

Similarly,

P1(ϕf
′) =

∑
nf̂(n)P1(z

n−1ϕ)

=
∞∑
n=1

nf̂(n)(zn−1ϕ+ +
∞∑
m=1

ϕ̂(−m)P1(z
mzn−1))

= ϕ+f
′ +

∞∑
n=1

f̂(n)
∞∑
m=1

ϕ̂(−m)P1(nz
mzn−1).

(8)

Since PB(zmzn)′ = P1(nz
mzn−1) for each m and n, the lemma follows by

comparing (8) with (7), and observing that the n = 0 term of the sum in (7)

is zero, since PB(zm) = 0 for all m ≥ 1.

Theorem 13. Let ϕ be a bounded, harmonic function on D. Then the

Toeplitz operator Tϕ is bounded on D iff

∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 |f |2 dA ≤ C‖f‖2D (9)

for all f ∈ D, for some constant C not depending on f .

Proof. Suppose that (9) holds. Then since P1 is bounded on L2 and ϕ is a



3 BERGMAN TOEPLITZ OPERATORS ON D 13

bounded function,

D(Tϕf) =

∫
|(Tϕf)′|2 dA =

∫ ∣∣∣∣∂ϕ∂z f + P1(ϕf
′)

∣∣∣∣2 dA
≤ 2

∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 |f |2 dA+ 2‖P1‖2‖ϕ‖2∞‖f ′‖2L2

≤ 2(C + ‖P1‖2‖ϕ‖2∞)‖f‖2D.

Also,

|(Tϕf)(0)| =
∣∣∣∣∫ ϕf dA

∣∣∣∣ ≤ ‖ϕ‖∞‖f‖L2 ≤ ‖ϕ‖∞‖f‖D.

Since

‖Tϕf‖2H2 ≤ |(Tϕf)(0)|2 +D(Tϕf),

it follows that Tϕ is bounded on D.

Conversely, suppose that Tϕ is bounded. Then by the lemma,∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 |f |2 dA ≤ 2‖(Tϕf)′‖22 + 2‖P1(ϕf

′)‖22

≤ 2‖Tϕf‖2D + 2‖P1‖2‖ϕ‖2∞‖f ′‖22

≤ 2‖Tϕ‖2‖f‖2D + 2‖P1‖2‖ϕ‖2∞‖f‖2D

= C‖f‖2D.

The condition of Theorem 13 is equivalent to that of ∂ϕ
∂z

being a multiplier

of D into L2
a; that is, ∂ϕ

∂z
D ⊂ L2

a. The condition also says that
∣∣∂ϕ
∂z

∣∣2 dA
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is a D-Carleson measure on D. Compare with the following theorem of

D. Stegenga [9]:

Theorem 14. A function g is a multiplier of D (into itself) iff g ∈ H∞ and

|g′|2 dA is a D-Carleson measure.

Stegenga also gives a geometric characterization of D-Carleson measures

in [9].

Since ∂ϕ
∂z

= ϕ′+, from Theorems 13 and 14 it follows that if Tϕ is bounded

on D and ϕ+ is a bounded function, then ϕ+ is a multiplier of D. However,

it is possible for Tϕ to be bounded without ϕ+ being bounded:

Example 15. Define the function g on D by g(z) =
∑

zn

n logn log logn
. Since∑

n|ĝ(n)|2 is finite, g ∈ D. Since D ⊂ BMOA, the space of analytic func-

tions having bounded mean oscillation on ∂D (see [8]), it follows from Fef-

ferman’s Theorem that we can choose a bounded, harmonic function ϕ such

that g = PBϕ = ϕ+. Since g is unbounded, ϕ+ is not a multiplier of D.

However, by a result of S. Axler and A. Shields [1], g′ is a multiplier of D

into L2
a. Therefore Tϕ is bounded on D.
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4 Hardy Toeplitz Operators on D(µ)

Let µ be a positive, finite Borel measure on ∂D. In this section, the symbols

ϕ ∈ L∞(∂D) for which the Toeplitz operator Tϕf = PH(ϕf) is bounded on

D(µ) will be determined.

Remark. Recall that ‖f‖2µ = ‖f‖22 +
∫
Dλ(f) dµ(λ). Since the projection PH

has norm one as an operator on L2(∂D),

‖Tϕf‖2 = ‖PH(ϕf)‖2 ≤ ‖ϕf‖2 ≤ ‖ϕ‖L∞(∂D)‖f‖2 ≤ ‖ϕ‖∞‖f‖µ.

Therefore Tϕ is bounded on D(µ) iff
∫
Dλ(Tϕf) dµ(λ) ≤ C‖f‖2µ for f ∈ D(µ)

and some C not depending on f .

Fix f ∈ D(µ). Then Dλ(f) < ∞ for [µ]-almost every λ ∈ ∂D. For each

such λ define fλ ∈ H2 as in Proposition 5.

Lemma 16.
∫
Dλ(Tϕ((z − λ)fλ)) dµ(λ) ≤ ‖ϕ‖2∞‖f‖2µ.

Proof. The result hinges on a commutation relation obtained by following

Tϕ((z − λ)fλ) by Tz, and using composition properties of H2 Toeplitz oper-
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ators:

TzTϕ((z − λ)fλ) = TzTϕTz−λfλ

= Tzϕ(z−λ)fλ

= T(1−zλ)ϕfλ

= Tz(z − λ)Tϕfλ.

Subtracting the end from the beginning, we see that if g = Tϕ((z − λ)fλ)−

(z − λ)Tϕfλ, then Tzg = 0. Since

Tzg = PH

(
e−iθ

∞∑
n=0

ĝ(n)einθ
)

= PH

( ∞∑
n=−1

ĝ(n+1)einθ
)

=
∞∑
n=0

ĝ(n+1)einθ = 0,

it follows that ĝ(n + 1) = 0 for all n ≥ 0. Thus g is constant, say with

constant value α. Hence

Tϕ((z − λ)fλ) = α + (z − λ)Tϕfλ.

Then by Proposition 5, Tϕ((z − λ)fλ) ∈ D(δλ), and

Dλ(Tϕ((z − λ)fλ)) = ‖Tϕfλ‖22 ≤ ‖ϕ‖2∞‖fλ‖22 = ‖ϕ‖2∞Dλ(f).

Therefore∫
Dλ(Tϕ((z − λ)fλ)) dµ(λ) ≤ ‖ϕ‖2∞

∫
Dλ(f) dµ(λ) ≤ ‖ϕ‖2∞‖f‖2µ.
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Remark. For each λ ∈ ∂D, Dλ(·)1/2 is a seminorm on D(δλ), and hence

satisfies the triangle inequality. Thus it follows from the lemma and the

previous remark that Tϕ is bounded on D(µ) iff
∫
Dλ(Tϕ(f(λ))) dµ(λ) ≤

C‖f‖2µ, for some C not depending on f .

Theorem 17. Let ϕ ∈ L∞(∂D). Then Tϕ is bounded on D(µ) iff

∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 P (|f |2µ) dA ≤ C‖f‖2µ,

for f ∈ D(µ) and some constant C not depending on f .

If ϕ satisfies the condition of the theorem, the measure
∣∣∂ϕ
∂z

∣∣2 dA will be

called a µ-Carleson measure.

Proof. Following the previous remark, we fix λ ∈ ∂D and calculate the local

Dirichlet integral at λ of Tϕ(f(λ)):

Dλ(Tϕ(f(λ))) =

∫
Dζ(Tϕ(f(λ))) dδλ(ζ)

=

∫
|(PH(ϕf(λ)))′|2Pδλ dA

= |f(λ)|2
∫ ∣∣∣∣∂ϕ∂z

∣∣∣∣2 Pδλ dA,
where the last occurrence of ϕ denotes the harmonic extension of ϕ to D.
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Integrating with respect to µ gives∫
Dλ(Tϕ(f(λ))) dµ(λ) =

∫
|f(λ)|2

∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 1− |z|2

|z − λ|2
dA(z) dµ(λ)

=

∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 ∫ |f(λ)|2 1− |z|2

|z − λ|2
dµ(λ) dA(z)

=

∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 P (|f |2µ) dA.

The theorem now follows from the previous remark.

In the case of the Dirichlet space D = D( dθ
2π

), the theorem says that the

Hardy Toeplitz operator Tϕ is bounded on D iff∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 P (|f |2) dA ≤ C‖f‖2D. (10)

Compare this with Theorem 13, which says that the Bergman Toeplitz op-

erator Tϕ is bounded on D iff∫ ∣∣∣∣∂ϕ∂z
∣∣∣∣2 |f |2 dA ≤ C‖f‖2D. (11)

However,

‖|f |2 − P (|f |2)‖∞ ≤ C1‖f‖2BMO ≤ C2‖f‖2D,

the first inequality being due to A. Garsia (see [4, p. 221]), the second to

Stegenga [8]. Therefore the two conditions (10) and (11) are equivalent.

Stegenga’s Theorem 14 characterizing the multipliers of D can be gener-

alized to the harmonic Dirichlet-type space D(µ):
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Theorem 18. A bounded function ϕ on ∂D is a multiplier of D(µ) iff∣∣∂ϕ
∂z

∣∣2 dA and
∣∣∂ϕ
∂z

∣∣2 dA are µ-Carleson measures.

Proof. Suppose that ϕ is a multiplier of D(µ). Since ‖ · ‖L2(∂D) ≤ ‖ · ‖D(µ),

norm convergence of a sequence in D(µ) implies almost-everywhere pointwise

convergence on ∂D of a subsequence. It then follows from the closed-graph

theorem that the operator Mϕ of multiplication by ϕ is bounded on D(µ).

Let f ∈ D(µ). Then

ϕ(λ)f(λ)− ϕ(eit)f(eit)

λ− eit
= f(λ)

ϕ(λ)− ϕ(eit)

λ− eit
+ ϕ(eit)

f(λ)− f(eit)

λ− eit
. (12)

Hence∫
|f(λ)|2Dλ(ϕ) dµ(λ) ≤ 2‖ϕ‖2∞

∫
Dλ(f) dµ(λ) + 2

∫
Dλ(ϕf) dµ(λ)

≤ 2(‖ϕ‖2∞ + ‖Mϕ‖2)‖f‖2D(µ).

Since ϕ = ϕ · 1 ∈ D(µ), by Proposition 8∫
|f(λ)|2Dλ(ϕ) dµ(λ) =

∫
|f(λ)|2

∫
D

(∣∣∣∣∂ϕ∂z
∣∣∣∣2 +

∣∣∣∣∂ϕ∂z
∣∣∣∣2)Pδλ dA(z) dµ(λ)

=

∫ (∣∣∣∣∂ϕ∂z
∣∣∣∣2 +

∣∣∣∣∂ϕ∂z
∣∣∣∣2)P (|f |2µ) dA.

Therefore
∣∣∂ϕ
∂z

∣∣2 dA and
∣∣∂ϕ
∂z

∣∣2 dA are µ-Carleson measures.

Conversely, suppose that
∣∣∂ϕ
∂z

∣∣2 dA and
∣∣∂ϕ
∂z

∣∣2 dA are µ-Carleson measures.

Since ∂ϕ
∂z

= ϕ′+ and ∂ϕ
∂z

= ϕ−
′, applying the µ-Carleson condition with f = 1
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gives that ϕ+, ϕ− ∈ D(µ). Thus ϕ ∈ D(µ). Then by (12) and Proposition 8,

∫
Dλ(ϕf) dµ(λ) ≤ 2

∫
|f(λ)|2Dλ(ϕ) dµ(λ) + 2‖ϕ‖2∞

∫
Dλ(f) dµ(λ)

=

∫ (∣∣∣∣∂ϕ∂z
∣∣∣∣2 +

∣∣∣∣∂ϕ∂z
∣∣∣∣2)P (|f |2µ) dA+ 2‖ϕ‖2∞

∫
Dλ(f) dµ(λ)

≤ C‖f‖2D(µ).

Therefore ϕ is a multiplier of D(µ).

Corollary 19. A holomorphic function ϕ on D is a multiplier of D(µ) iff ϕ

is bounded and |ϕ′|2 dA is a µ-Carleson measure.

Proof. Suppose ϕ is a multiplier of D(µ). That |ϕ′|2 dA is a µ-Carleson

measure follows as in the proof of the theorem, with D(µ) replaced with

D(µ), and noting that ∂ϕ
∂z

= 0. That ϕ is bounded follows from the existence

of reproducing kernels in D(µ): as above, Mϕ is bounded on D(µ). Then

|ϕ(w)|‖kw‖2 = |ϕ(w)kw(w)| = |〈ϕkw, kw〉| ≤ ‖ϕkw‖‖kw‖ ≤ ‖Mϕ‖‖kw‖2;

thus |ϕ| is bounded by ‖Mϕ‖ on D.

If ϕ is bounded and |ϕ′|2 dA is a µ-Carleson measure, then since ∂ϕ
∂z

= 0

and ϕ′ = ∂ϕ
∂z

, the theorem gives that ϕ is a multiplier of D(µ). Since ϕ is

holomorphic, ϕ is a multiplier of D(µ).
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The following connection between bounded Toeplitz operators and mul-

tipliers of D(µ) is an immediate consequence of Theorems 17 and 18.

Corollary 20. A function ϕ ∈ L∞(∂D) is a multiplier of D(µ) iff Tϕ and

Tϕ are bounded on D(µ).
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